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7 Abstract

t
The ratio of the values of optimal integer and fractional solutions

to a set covering problem was shown by Johnson IS]'and Lovdsz [6] to be
e

bounded by B(d) = 1 + n d, where d {s the largest column sum._ We show

| -
that 4if n is the number of variables, B(n) = -tl-;- LB-;—I-_; (-n—;-l-l is X best possible

bound on this ratio. Furthermore, for every n > 20 there are pro Lems for

L
which B(n) < 2.5B(d)'
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OPTIMAL INTEGER AND FRACTIONAL

COVERS: A SHARP BOUND ON THEIR RATIO

by

Egon Balas

The simple (unweighted) set covering problem is

(€) z, = min{enx‘Ax e, X binary},

where A is anm X n O-1 matrix and for k = m, n, e is the k-vector whose
components are all equal to 1, while x is an n-vector of variables.
If the 0-1 condition on the variables is relaxed to nonnegativity, we

obtain the continuous or fractional set covering problem

(F) = min{enxle > e s X > 0j.

Zp

A vector x that satisfies the constraints of (C) (of (F)) will be called

a cover (fractional cover).

The set covering problem is known to be NP-complete. One of the best
known procedures for finding a cover that approximates the optimum is the greedy
heuristic, which consists of a sequence of steps, each of which assigns the
value 1 to a variable whose column covers a maximal number of additional rows.

The worst case behavior of the greedy heuristic for the (unweighted) set covering

problem was shown by Johnson [5] and Lovdsz [6] to be given by the relation

%c
(¢)) - SH@) <1+ 4),
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where z, is the value of a cover obtained by the greedy heuristic,

G
m

d = max r a,,, .
je{l,...,n} 1=1 *J 1
and 1
d 4

Bd) = ¢ %
j=1j 'v

Thus the ratio between the value of a "greedy" cover and that of an optimal

fractional cover increases at most with the logarithm of the largest column sum.

Chvdtal [2] has shown that the worst case bound given by (1) is also
valid for the greedy heuristic when applied to the weighted set covering problem

with arbitrary but positive cost coefficients ¢,, j =1,...,n. If k__ repre-
3

jt
sents the number of new rows covered by column j at step t, the greedy heuristic
for the weighted set covering problem assigns the value 1 at step t to a variable
x, whose choice maximizes k, /c..

] jt 7]
given by (1) 1is best possible for any (weighted) set éovering heuristic that

Furthermore, Ho [3] has shown that the bound

assigns the value 1 at step t to a variable xj whose choice maximizes some

arbitrary function f(c,, k, ).

R =

Another class of heuristics, which uses information (reduced costs)
obtained from a (not necessarily optimal) solution to the dual linear program,
has consistently outperformed in empirical tests the greedy heuristic and its
above mentioned generalizations (see Balas and Ho [1]), but no worst case
bound better than (or comparable to) (1) is known for it (see Hochbaum {4) for

a discussion of bounds for this heuristic).

Sinze zZ, > z, > Zp the relation (1) implies of course both

QN ION

(2)

< H(d)
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and
z
3) < <cu@ .
F

However, while H(d) is a best possible bound for both zG/zF and zG/zC,
it was until recently an open question whether it is also a best possible bound
for zc/zF, since no better bound than H(d) was known for this latter ratio. !

In this paper we give a best possible bound on the value of zc/zF for

unweighted set covering problems, as a function of the number n of columns, for
an arbitrary number of rows. For every value of n, there are broblems for which
this bound has a value of approximately Elg H(d).

For an arbitrary 0-1 matrix A, we will denote by zC(A) and zF(A) the
value of an optimal solution to the (unweighted) set covering problem defined

by A, and to the fractional set covering problem defined by A, respectively.

Let #° denote the class of 0-1 matrices with at most n columns, and let

Jn(P) = {A €£¢nlzC(A) = P} .

Theorem 1. For any positive integer n and any pe{l,...,n},

n
(%) A“:‘jn(p) *F(a) T n-pl °

’
and the miniwmum in (4) is attained for the &:) X n matrix A* wvhose rows are all

the distinct 0-1 n-vectors with exactly n-p+l components equal to 1.

Proof. We first show that A*‘eﬂn(p). A* has n columns by assumption.

Any binary n-vector x having at least p components equal to 1 satisfies A*x > eq’

where q = (:), since no row of A* has more than p-1 entries equal to 0. Further,

every binary n-vector x with at most p-1 components equal to 1 violates the




inequality corresponding to that particular row of A*, whose p-1 entries equal

to 0 include those positions where ;j = 0. Thus zC(A*) = p, i.e., A* edn(p).

Next we show that z = n/(n-p+1). Let k = n-p+l, and let X be

F(A*)

defined by X, = 1/k, j=1,...,n. Let B be any n X n nonsingular submatrix

3
of A*, such that every column of B has exactly k entries equal to 1. The
definition of A* guarantees the existence of B. Now let U be the g-vector

i

X and U are feasible solutions to the linear program min{enx‘A*x > eqr X > 0}

defined by 'Ei = 1/k if the ith row of A* is a row of B, 4, = O otherwise. Then

and its dual, respectively, with value en; = eq'ﬁ' = n/k. Hence X 1s an optimal

fractional cover, and Zpax) = On¥ = n/ (n-p+1).

Finally, we show that A* minimizes z over h’in(p). Assume this to be

F(A)

o . n
false, and let A~ be a matrix that minimizes Zp(a) OVer ¥ (p), with 25 (A°) < Zp (A%) "

Also, let A* = (a*,), A° = (a:j). W.l.0.g., we may assume that A° has n columns,

ij
since adding columns whose entries are all equal to 0 does not change either the
integer or the fractional optimum. For every SC({1,...,n} such that ISI = p-1,
A° has a row i such that a°, = 0, ¥ jeS; or else x defined by x

1j i

ﬁj = 0, j4S, would be a cover with value p-1, contrary to the assumption that

= 1, jeS,

A° eﬂn(p). Hence for every row i of A%, A° has a row k such that azj < an’

j=1,...,n. But then x >0, A°x > er implies A*x > eq (wvhere r is the number

of rows of Ao), hence zF(A*) < zF(A°)’ a contradiction.

Theorem 2. For any A s.dn,

and this is a best possible bound.
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Proof. For fixed p¢{l,...,n}, from Theorem 1

2
(6) max <& J R n iy,
Aed™p) *ray M

If p is allowed to vary continuously in the interval [1, n], the right

hand side of (6) is concave and attains its maximum for p = (n+l)/2. Since p

has to be integer, the maximum is attained either for p = lgilj or for p = |E§lj,
namely,
z | \ Mtl] Tl A
e 20 - e (3 (38 0, 1] o )
Aed” *F(a) - B
-1l Mokl I
_ni_ '2!"
; Another expression for the above bound is given by
% + % if n is even
1o+l Mo+l _
& nl 2. J I a1 1
Z+E+4—n if n is odd.
: Thus, the n variables set covering problem for which the ratio zC(A)/zF(A)
!
i attains its maximum, is the one whose coefficient matrix has exactly Ln+1' 1's in
-

every row, and contains as a row every binary n-vector with L—E_J components

equal to 1, For this problem, z = (Etéj and z - 20 _ where § =
C(a) 2 F(A) nt+2-§°

if n is even and 6 = 1 if n is odd,

Before concluding our paper, we compare the bound on zC(A)/zF(A) given
in Theorem 2, with the bound on zG(A)/zF(A) given by (1). To do this, we note
that when we consider the bound H(d) given by (1) for all set covering problems

defined by matrices A.edn; the largest d that can occur (provided A has no




componentwise equal rows), happens to occur for the matrix A* having as rows
all possible 0-1 n-vectors with exactly nglj components equal to 1. For this

matrix, we denote d(A%*) = d*, and we have

n-1 \ n-1
d* = =

2 S ln-1

N Uz J

We want to assess the value of the ratio

1 +Jn d*

® R L adl Torl
aL 2 J 2

Theorem 3. For n > 2,

n-1 n-1\
9) R>4;_-’_—1-9n<2—5—).

Proof. From (8), we have

a-1
(10) R=—2 1+0m|, .
allat el |

Using Stirling's formula as refined by Robbins,

1/2e1/(12q+1) <ql < qqe—q(an)l/ZeI/IZq

qde™Y(2nq)

we have
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7
=l (e-Di
'n;li.[a:!.
n-1: l_ 2 412 |
7 J
> (n-l)n-l-el-n-LZJ 1)11/2 e?
Ln;l_j n-1" '2:1 fn;l’ 1/2
n-1L 2 n-1szi 2 2| n ['n1~ L By
L‘z"_l wal EC ek e
yn-l [n_-l
_/_a=1\- 2 - 1 2 n-1 1/2 & B-Y
ln=1; | [m=L” a-l fa-1" ’
L2 4 72 2 J 2 |
where
B 1 1 1
« = T(m-D+L B=—1 > Y a1
12{ —= 12| —
2 S 2
Thus
n-1
1 n-1 _ (p-17, n-1 1
n-l—, | n-1'+|23%‘~n__]_.+ e 'rn-‘x+°‘5Y’
L 2 wl 7| 2 =5 1
and therefore, using (10),
n L&i’ ol Bl
S 7 :1-11,_\2'%::-1+ a 5
L&iﬂ-y‘? Lx.l.! Ln_ﬂ !fﬂ"i ]’r_l:! [ ol :l'n_ﬂ' ’
2 472 | | 2 42 | 2 | L2 472
where
b=1+2m—E—ra-p-y
n(n 1) ’
and we have used the fact that n(n-2) < (u-l)2 for n > 2,




8
| =17 -1 . n-1
vstng | %5+ [27H] = a1 and s S 20 i
il bl
we obtain
(n+1)(n-1) n-l n _o-1l, n-1 }
=00 T |2

As the last term is nonnegative for n > 2, and

<

[NT]-]

n+1J l'n+1'1 Mn~1"
2

inequality (11) implies (9). H
The value of the righthand side in (9) is 2.5 for n = 20, and it

approaches the constant 4 /n 2 ~ 2.769 as n goes to infinity. Thus for the

problems for which d = d*, the bound on zc/zF is about 1/2.7 of the bound on

] 25/ 2p-
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